Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Infect Dis ; 228(1): 37-45, 2023 06 28.
Article in English | MEDLINE | ID: mdl-36805719

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control on college campuses is challenging given communal living and student social dynamics. Understanding SARS-CoV-2 transmission among college students is important for the development of optimal control strategies. METHODS: SARS-CoV-2 nasal swab samples were collected from University of Pittsburgh students for symptomatic testing and asymptomatic surveillance from August 2020 through April 2021 from 3 campuses. Whole-genome sequencing (WGS) was performed on 308 samples, and contact tracing information collected from students was used to identify transmission clusters. RESULTS: We identified 31 Pangolin lineages of SARS-CoV-2, the majority belonging to B.1.1.7 (Alpha) and B.1.2 lineages. Contact tracing identified 142 students (46%) clustering with each other; WGS identified 53 putative transmission clusters involving 216 students (70%). WGS identified transmissions that were missed by contact tracing. However, 84 cases (27%) could not be linked by either WGS or contact tracing. Clusters were most frequently linked to students residing in the same dormitory, off-campus roommates, friends, or athletic activities. CONCLUSIONS: The majority of SARS-CoV-2-positive samples clustered by WGS, indicating significant transmission across campuses. The combination of WGS and contact tracing maximized the identification of SARS-CoV-2 transmission on campus. WGS can be used as a strategy to mitigate, and further prevent transmission among students.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pennsylvania/epidemiology , Universities , COVID-19/epidemiology , Genomics , Students
2.
J Am Coll Health ; : 1-9, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595575

ABSTRACT

OBJECTIVE: A small percentage of universities and colleges conducted mass SARS-CoV-2 testing. However, universal testing is resource-intensive, strains national testing capacity, and false negative tests can encourage unsafe behaviors. PARTICIPANTS: A large urban university campus. METHODS: Virus control centered on three pillars: mitigation, containment, and communication, with testing of symptomatic and a random subset of asymptomatic students. RESULTS: Random surveillance testing demonstrated a prevalence among asymptomatic students of 0.4% throughout the term. There were two surges in cases that were contained by enhanced mitigation and communication combined with targeted testing. Cumulative cases totaled 445 for the term, most resulting from unsafe undergraduate student behavior and among students living off-campus. A case rate of 232/10,000 undergraduates equaled or surpassed several peer institutions that conducted mass testing. CONCLUSIONS: An emphasis on behavioral mitigation and communication can control virus transmission on a large urban campus combined with a limited and targeted testing strategy.

3.
Article in English | MEDLINE | ID: mdl-36483409

ABSTRACT

Background: Whole-genome sequencing (WGS) has traditionally been used in infection prevention to confirm or refute the presence of an outbreak after it has occurred. Due to decreasing costs of WGS, an increasing number of institutions have been utilizing WGS-based surveillance. Additionally, machine learning or statistical modeling to supplement infection prevention practice have also been used. We systematically reviewed the use of WGS surveillance and machine learning to detect and investigate outbreaks in healthcare settings. Methods: We performed a PubMed search using separate terms for WGS surveillance and/or machine-learning technologies for infection prevention through March 15, 2021. Results: Of 767 studies returned using the WGS search terms, 42 articles were included for review. Only 2 studies (4.8%) were performed in real time, and 39 (92.9%) studied only 1 pathogen. Nearly all studies (n = 41, 97.6%) found genetic relatedness between some isolates collected. Across all studies, 525 outbreaks were detected among 2,837 related isolates (average, 5.4 isolates per outbreak). Also, 35 studies (83.3%) only utilized geotemporal clustering to identify outbreak transmission routes. Of 21 studies identified using the machine-learning search terms, 4 were included for review. In each study, machine learning aided outbreak investigations by complementing methods to gather epidemiologic data and automating identification of transmission pathways. Conclusions: WGS surveillance is an emerging method that can enhance outbreak detection. Machine learning has the potential to identify novel routes of pathogen transmission. Broader incorporation of WGS surveillance into infection prevention practice has the potential to transform the detection and control of healthcare outbreaks.

4.
PLoS One ; 17(8): e0272954, 2022.
Article in English | MEDLINE | ID: mdl-36044529

ABSTRACT

We performed whole genome sequencing on SARS-CoV-2 from 59 vaccinated individuals from southwest Pennsylvania who tested positive between February and September, 2021. A comparison of mutations among vaccine breakthrough cases to a time-matched control group identified potential adaptive responses of SARS-CoV-2 to vaccination.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/epidemiology , COVID-19/prevention & control , Genomics , Humans , Pennsylvania/epidemiology , SARS-CoV-2/genetics
5.
PLoS One ; 17(7): e0271381, 2022.
Article in English | MEDLINE | ID: mdl-35819967

ABSTRACT

OBJECTIVE: We used SARS-CoV-2 whole-genome sequencing (WGS) and electronic health record (EHR) data to investigate the associations between viral genomes and clinical characteristics and severe outcomes among hospitalized COVID-19 patients. METHODS: We conducted a case-control study of severe COVID-19 infection among patients hospitalized at a large academic referral hospital between March 2020 and May 2021. SARS-CoV-2 WGS was performed, and demographic and clinical characteristics were obtained from the EHR. Severe COVID-19 (case patients) was defined as having one or more of the following: requirement for supplemental oxygen, mechanical ventilation, or death during hospital admission. Controls were hospitalized patients diagnosed with COVID-19 who did not meet the criteria for severe infection. We constructed predictive models incorporating clinical and demographic variables as well as WGS data including lineage, clade, and SARS-CoV-2 SNP/GWAS data for severe COVID-19 using multiple logistic regression. RESULTS: Of 1,802 hospitalized SARS-CoV-2-positive patients, we performed WGS on samples collected from 590 patients, of whom 396 were case patients and 194 were controls. Age (p = 0.001), BMI (p = 0.032), test positive time period (p = 0.001), Charlson comorbidity index (p = 0.001), history of chronic heart failure (p = 0.003), atrial fibrillation (p = 0.002), or diabetes (p = 0.007) were significantly associated with case-control status. SARS-CoV-2 WGS data did not appreciably change the results of the above risk factor analysis, though infection with clade 20A was associated with a higher risk of severe disease, after adjusting for confounder variables (p = 0.024, OR = 3.25; 95%CI: 1.31-8.06). CONCLUSIONS: Among people hospitalized with COVID-19, older age, higher BMI, earlier test positive period, history of chronic heart failure, atrial fibrillation, or diabetes, and infection with clade 20A SARS-CoV-2 strains can predict severe COVID-19.


Subject(s)
Atrial Fibrillation , COVID-19 , Heart Failure , COVID-19/epidemiology , Case-Control Studies , Electronic Health Records , Heart Failure/epidemiology , Heart Failure/genetics , Humans , SARS-CoV-2/genetics
6.
mSystems ; 7(3): e0138421, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35695507

ABSTRACT

Healthcare-associated infections (HAIs) cause mortality, morbidity, and waste of health care resources. HAIs are also an important driver of antimicrobial resistance, which is increasing around the world. Beginning in November 2016, we instituted an initiative to detect outbreaks of HAIs using prospective whole-genome sequencing-based surveillance of bacterial pathogens collected from hospitalized patients. Here, we describe the diversity of bacteria sampled from hospitalized patients at a single center, as revealed through systematic analysis of bacterial isolate genomes. We sequenced the genomes of 3,004 bacterial isolates from hospitalized patients collected over a 25-month period. We identified bacteria belonging to 97 distinct species, which were distributed among 14 groups of related species. Within these groups, isolates could be distinguished from one another by both average nucleotide identity (ANI) and principal-component analysis of accessory genes (PCA-A). Core genome genetic distances and rates of evolution varied among species, which has practical implications for defining shared ancestry during outbreaks and for our broader understanding of the origins of bacterial strains and species. Finally, antimicrobial resistance genes and putative mobile genetic elements were frequently observed, and our systematic analysis revealed patterns of occurrence across the different species sampled from our hospital. Overall, this study shows how understanding the population structure of diverse pathogens circulating in a single health care setting can improve the discriminatory power of genomic epidemiology studies and can help define the processes leading to strain and species differentiation. IMPORTANCE Hospitalized patients are at increased risk of becoming infected with antibiotic-resistant organisms. We used whole-genome sequencing to survey and compare over 3,000 clinical bacterial isolates collected from hospitalized patients at a large medical center over a 2-year period. We identified nearly 100 different bacterial species, which we divided into 14 different groups of related species. When we examined how genetic relatedness differed between species, we found that different species were likely evolving at different rates within our hospital. This is significant because the identification of bacterial outbreaks in the hospital currently relies on genetic similarity cutoffs, which are often applied uniformly across organisms. Finally, we found that antibiotic resistance genes and mobile genetic elements were abundant and were shared among the bacterial isolates we sampled. Overall, this study provides an in-depth view of the genomic diversity and evolutionary processes of bacteria sampled from hospitalized patients, as well as genetic similarity estimates that can inform hospital outbreak detection and prevention efforts.


Subject(s)
Genome, Bacterial , Genomics , Humans , Genome, Bacterial/genetics , Whole Genome Sequencing , Anti-Bacterial Agents , Hospitals
9.
Clin Infect Dis ; 75(3): 476-482, 2022 08 31.
Article in English | MEDLINE | ID: mdl-34791136

ABSTRACT

BACKGROUND: Most hospitals use traditional infection prevention (IP) methods for outbreak detection. We developed the Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT), which combines whole-genome sequencing (WGS) surveillance and machine learning (ML) of the electronic health record (EHR) to identify undetected outbreaks and the responsible transmission routes, respectively. METHODS: We performed WGS surveillance of healthcare-associated bacterial pathogens from November 2016 to November 2018. EHR ML was used to identify the transmission routes for WGS-detected outbreaks, which were investigated by an IP expert. Potential infections prevented were estimated and compared with traditional IP practice during the same period. RESULTS: Of 3165 isolates, there were 2752 unique patient isolates in 99 clusters involving 297 (10.8%) patient isolates identified by WGS; clusters ranged from 2-14 patients. At least 1 transmission route was detected for 65.7% of clusters. During the same time, traditional IP investigation prompted WGS for 15 suspected outbreaks involving 133 patients, for which transmission events were identified for 5 (3.8%). If EDS-HAT had been running in real time, 25-63 transmissions could have been prevented. EDS-HAT was found to be cost-saving and more effective than traditional IP practice, with overall savings of $192 408-$692 532. CONCLUSIONS: EDS-HAT detected multiple outbreaks not identified using traditional IP methods, correctly identified the transmission routes for most outbreaks, and would save the hospital substantial costs. Traditional IP practice misidentified outbreaks for which transmission did not occur. WGS surveillance combined with EHR ML has the potential to save costs and enhance patient safety.


Subject(s)
Cross Infection , Electronic Health Records , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/prevention & control , Delivery of Health Care , Disease Outbreaks , Genome, Bacterial , Humans , Machine Learning , Whole Genome Sequencing/methods
10.
Diagn Microbiol Infect Dis ; 101(3): 115468, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34425451

ABSTRACT

Nasal and nasopharyngeal swab specimens tested by the Cepheid Xpert Xpress SARS-CoV-2 were analyzed by whole-genome sequencing based on impaired detection of the N2 target. Each viral genome had at least one mutation in the N gene, which likely arose independently in the New York City and Pittsburgh study sites.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics , Cities/epidemiology , Databases, Genetic , Genome, Viral , Humans , Mutation , Phosphoproteins/genetics , United States/epidemiology
11.
J Infect Dis ; 223(12): 2038-2047, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33107578

ABSTRACT

BACKGROUND: The mechanisms by which Neisseria meningitidis cause persistent human carriage and transition from carriage to invasive disease have not been fully elucidated. METHODS: Georgia and Maryland high school students were sampled for pharyngeal carriage of N. meningitidis during the 2006-2007 school year. A total of 321 isolates from 188 carriers and all 67 invasive disease isolates collected during the same time and from the same geographic region underwent whole-genome sequencing. Core-genome multilocus sequence typing was used to compare allelic profiles, and direct read mapping was used to study strain evolution. RESULTS: Among 188 N. meningitidis culture-positive students, 98 (52.1%) were N. meningitidis culture positive at 2 or 3 samplings. Most students who were positive at >1 sampling (98%) had persistence of a single strain. More than a third of students carried isolates that were highly genetically related to isolates from other students in the same school, and occasional transmission within the same county was also evident. The major pilin subunit gene, pilE, was the most variable gene, and no carrier had identical pilE sequences at different time points. CONCLUSION: We found strong evidence of local meningococcal transmission at both the school and county levels. Allelic variation within genes encoding bacterial surface structures, particularly pilE, was common.


Subject(s)
Meningococcal Infections , Neisseria meningitidis , Adolescent , Carrier State/epidemiology , Fimbriae Proteins/genetics , Georgia/epidemiology , Humans , Maryland/epidemiology , Meningococcal Infections/epidemiology , Meningococcal Infections/transmission , Neisseria meningitidis/genetics , Schools , Students
12.
Clin Infect Dis ; 73(1): e9-e18, 2021 07 01.
Article in English | MEDLINE | ID: mdl-32367125

ABSTRACT

BACKGROUND: Whole genome sequencing (WGS) surveillance and electronic health record data mining have the potential to greatly enhance the identification and control of hospital outbreaks. The objective was to develop methods for examining economic value of a WGS surveillance-based infection prevention (IP) program compared to standard of care (SoC). METHODS: The economic value of a WGS surveillance-based IP program was assessed from a hospital's perspective using historical outbreaks from 2011-2016. We used transmission network of outbreaks to estimate incremental cost per transmission averted. The number of transmissions averted depended on the effectiveness of intervening against transmission routes, time from transmission to positive culture results and time taken to obtain WGS results and intervene on the transmission route identified. The total cost of an IP program included cost of staffing, WGS, and treating infections. RESULTS: Approximately 41 out of 89 (46%) transmissions could have been averted under the WGS surveillance-based IP program, and it was found to be a less costly and more effective strategy than SoC. The results were most sensitive to the cost of performing WGS and the number of isolates sequenced per year under WGS surveillance. The probability of the WGS surveillance-based IP program being cost-effective was 80% if willingness to pay exceeded $2400 per transmission averted. CONCLUSIONS: The proposed economic analysis is a useful tool to examine economic value of a WGS surveillance-based IP program. These methods will be applied to a prospective evaluation of WGS surveillance compared to SoC.


Subject(s)
Disease Outbreaks , Standard of Care , Cost-Benefit Analysis , Genome, Bacterial , Hospitals , Humans , Prospective Studies , Whole Genome Sequencing
13.
Clin Infect Dis ; 73(3): e638-e642, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33367518

ABSTRACT

BACKGROUND: Traditional methods of outbreak investigations utilize reactive whole genome sequencing (WGS) to confirm or refute the outbreak. We have implemented WGS surveillance and a machine learning (ML) algorithm for the electronic health record (EHR) to retrospectively detect previously unidentified outbreaks and to determine the responsible transmission routes. METHODS: We performed WGS surveillance to identify and characterize clusters of genetically-related Pseudomonas aeruginosa infections during a 24-month period. ML of the EHR was used to identify potential transmission routes. A manual review of the EHR was performed by an infection preventionist to determine the most likely route and results were compared to the ML algorithm. RESULTS: We identified a cluster of 6 genetically related P. aeruginosa cases that occurred during a 7-month period. The ML algorithm identified gastroscopy as a potential transmission route for 4 of the 6 patients. Manual EHR review confirmed gastroscopy as the most likely route for 5 patients. This transmission route was confirmed by identification of a genetically-related P. aeruginosa incidentally cultured from a gastroscope used on 4of the 5 patients. Three infections, 2 of which were blood stream infections, could have been prevented if the ML algorithm had been running in real-time. CONCLUSIONS: WGS surveillance combined with a ML algorithm of the EHR identified a previously undetected outbreak of gastroscope-associated P. aeruginosa infections. These results underscore the value of WGS surveillance and ML of the EHR for enhancing outbreak detection in hospitals and preventing serious infections.


Subject(s)
Cross Infection , Pseudomonas Infections , Cross Infection/diagnosis , Cross Infection/epidemiology , Disease Outbreaks , Gastroscopes , Humans , Pseudomonas Infections/diagnosis , Pseudomonas Infections/epidemiology , Pseudomonas aeruginosa/genetics , Retrospective Studies , Whole Genome Sequencing
14.
Elife ; 92020 04 14.
Article in English | MEDLINE | ID: mdl-32285801

ABSTRACT

Multidrug-resistant bacteria pose a serious health threat, especially in hospitals. Horizontal gene transfer (HGT) of mobile genetic elements (MGEs) facilitates the spread of antibiotic resistance, virulence, and environmental persistence genes between nosocomial pathogens. We screened the genomes of 2173 bacterial isolates from healthcare-associated infections from a single hospital over 18 months, and identified identical nucleotide regions in bacteria belonging to distinct genera. To further resolve these shared sequences, we performed long-read sequencing on a subset of isolates and generated highly contiguous genomes. We then tracked the appearance of ten different plasmids in all 2173 genomes, and found evidence of plasmid transfer independent from bacterial transmission. Finally, we identified two instances of likely plasmid transfer within individual patients, including one plasmid that likely transferred to a second patient. This work expands our understanding of HGT in healthcare settings, and can inform efforts to limit the spread of drug-resistant pathogens in hospitals.


Bacteria are able to pass each other genes that make them invulnerable to antibiotics. This exchange of genetic material, also called horizontal gene transfer, can turn otherwise harmless bacteria into drug-resistant 'superbugs'. This is particularly problematic in hospitals, where bacteria use horizontal gene transfer to become resistant to several antibiotics and disinfectants at once, leading to serious infections that are difficult to treat. How can scientists stop bacteria from sharing genes with one another? To answer this question, first it is important to understand how horizontal gene transfer happens in the bacteria that cause infections in hospitals. To this end, Evans et al. examined the genomes of over 2000 different bacteria, collected from a hospital over 18 months, for signs of horizontal transfer. First the experiments identified the genetic material that had potentially been transferred between bacteria, also known as 'mobile genetic elements'. Next, Evans et al. examined the data of patients who had been infected with the bacteria carrying these mobile genetic elements to see whether horizontal transfer might have happened in the hospital. By combining genomics with patient data, it was determined that many of the mobile genetic elements identified were likely being shared among hospital bacteria. One of the mobile genetic elements identified was able to provide resistance to several drugs, and appeared to have been horizontally transferred between bacteria infecting two separate patients. The findings of Evans et al. show that the horizontal transfer of mobile genetic elements in hospital settings is likely frequent, but complex and difficult to study with current methods. The results of this study show how these events can now be tracked and analyzed, which may lead to new strategies for controlling the spread of antibiotic resistance.


Subject(s)
Bacterial Infections/genetics , Bacterial Infections/transmission , Cross Infection/genetics , Cross Infection/transmission , Drug Resistance, Multiple, Bacterial/genetics , Gene Transfer, Horizontal/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Disease Transmission, Infectious , Female , Hospitals , Humans , Interspersed Repetitive Sequences/genetics , Male , Middle Aged , Plasmids/genetics , Young Adult
15.
Emerg Infect Dis ; 26(2): 366-369, 2020 02.
Article in English | MEDLINE | ID: mdl-31961306

ABSTRACT

We describe 2 human cases of infection with a new Neisseria species (putatively N. brasiliensis), 1 of which involved bacteremia. Genomic analyses found that both isolates were distinct strains of the same species, were closely related to N. iguanae, and contained a capsule synthesis operon similar to N. meningitidis.


Subject(s)
Meningococcal Infections/diagnosis , Neisseria/isolation & purification , Aged , Brazil , Female , Humans , Male , Middle Aged , Neisseria/genetics
16.
Clin Infect Dis ; 70(11): 2336-2343, 2020 05 23.
Article in English | MEDLINE | ID: mdl-31312842

ABSTRACT

BACKGROUND: Vancomycin-resistant enterococci (VRE) are a major cause of hospital-acquired infections. The risk of infection from interventional radiology (IR) procedures is not well documented. Whole-genome sequencing (WGS) surveillance of clinical bacterial isolates among hospitalized patients can identify previously unrecognized outbreaks. METHODS: We analyzed WGS surveillance data from November 2016 to November 2017 for evidence of VRE transmission. A previously unrecognized cluster of 10 genetically related VRE (Enterococcus faecium) infections was discovered. Electronic health record review identified IR procedures as a potential source. An outbreak investigation was conducted. RESULTS: Of the 10 outbreak patients, 9 had undergone an IR procedure with intravenous (IV) contrast ≤22 days before infection. In a matched case-control study, preceding IR procedure and IR procedure with contrast were associated with VRE infection (matched odds ratio [MOR], 16.72; 95% confidence interval [CI], 2.01 to 138.73; P = .009 and MOR, 39.35; 95% CI, 7.85 to infinity; P < .001, respectively). Investigation of IR practices and review of the manufacturer's training video revealed sterility breaches in contrast preparation. Our investigation also supported possible transmission from an IR technician. Infection prevention interventions were implemented, and no further IR-associated VRE transmissions have been observed. CONCLUSIONS: A prolonged outbreak of VRE infections related to IR procedures with IV contrast resulted from nonsterile preparation of injectable contrast. The fact that our VRE outbreak was discovered through WGS surveillance and the manufacturer's training video that demonstrated nonsterile technique raise the possibility that infections following invasive IR procedures may be more common than previously recognized.


Subject(s)
Cross Infection , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Cross Infection/epidemiology , Disease Outbreaks , Enterococcus faecium/genetics , Gram-Positive Bacterial Infections/epidemiology , Humans , Radiology, Interventional , Vancomycin , Vancomycin-Resistant Enterococci/genetics
17.
mBio ; 10(5)2019 09 03.
Article in English | MEDLINE | ID: mdl-31481386

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains belonging to sequence type 258 (ST258) are frequent causes of hospital-associated outbreaks and are a major contributor to the spread of carbapenemases. This genetic lineage emerged several decades ago and remains a major global health care challenge. In this study, genomic epidemiology was used to investigate the emergence, evolution, and persistence of ST258 carbapenem-resistant K. pneumoniae outbreak-causing lineages at a large tertiary care hospital over 8 years. A time-based phylogenetic analysis of 136 ST258 isolates demonstrated the succession of multiple genetically distinct ST258 sublineages over the 8-year period. Ongoing genomic surveillance identified the emergence and persistence of several distinct clonal ST258 populations. Patterns of multidrug resistance determinants and plasmid replicons were consistent with continued evolution and persistence of these populations. Five ST258 outbreaks were documented, including three that were caused by the same clonal lineage. Mutations in genes encoding effectors of biofilm production and iron acquisition were identified among persistent clones. Two emergent lineages bearing K. pneumoniae integrative conjugative element 10 (ICEKp10) and harboring yersiniabactin and colibactin virulence factors were identified. The results show how distinct ST258 subpopulations have evolved and persisted within the same hospital over nearly a decade.IMPORTANCE The carbapenem class of antibiotics is invaluable for the treatment of selected multidrug-resistant Gram-negative pathogens. The continued transmission of carbapenem-resistant bacteria such as ST258 K. pneumoniae is of serious global public health concern, as treatment options for these infections are limited. This genomic epidemiologic investigation traced the natural history of ST258 K. pneumoniae in a single health care setting over nearly a decade. We found that distinct ST258 subpopulations have caused both device-associated and ward-associated outbreaks, and some of these populations remain endemic within our hospital to the present day. The finding of virulence determinants among emergent ST258 clones supports the idea of convergent evolution of drug-resistant and virulent CRKP strains and highlights the need for continued surveillance, prevention, and control efforts to address emergent and evolving ST258 populations in the health care setting.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae/genetics , Disease Outbreaks , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Molecular Epidemiology , Tertiary Care Centers , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Carbapenem-Resistant Enterobacteriaceae/pathogenicity , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Genotype , Humans , Klebsiella Infections/microbiology , Mutation , Phenotype , Phylogeny , Plasmids , Replicon , Virulence Factors/genetics , Whole Genome Sequencing
18.
J Glob Antimicrob Resist ; 19: 136-143, 2019 12.
Article in English | MEDLINE | ID: mdl-31005733

ABSTRACT

OBJECTIVES: The antimicrobial resistance (AMR) crisis represents a serious threat to public health and has resulted in concentrated efforts to accelerate development of rapid molecular diagnostics for AMR. In combination with publicly available web-based AMR databases, whole-genome sequencing (WGS) offers the capacity for rapid detection of AMR genes. Here we studied the concordance between WGS-based resistance prediction and phenotypic susceptibility test results for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) clinical isolates using publicly available tools and databases. METHODS: Clinical isolates prospectively collected at the University of Pittsburgh Medical Center between December 2016 and December 2017 underwent WGS. The AMR gene content was assessed from assembled genomes by BLASTn search of online databases. Concordance between the WGS-predicted resistance profile and phenotypic susceptibility as well as the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for each antibiotic/organism combination, using the phenotypic results as gold standard. RESULTS: Phenotypic susceptibility testing and WGS results were available for 1242 isolate/antibiotic combinations. Overall concordance was 99.3%, with a sensitivity, specificity, PPV and NPV of 98.7% (95% CI 97.2-99.5%), 99.6% (95% CI 98.8-99.9%), 99.3% (95% CI 98.0-99.8%) and 99.2% (95% CI 98.3-99.7%), respectively. Additional identification of point mutations in housekeeping genes increased the concordance to 99.4%, sensitivity to 99.3% (95% CI 98.2-99.8%) and NPV to 99.4% (95% CI 98.4-99.8%). CONCLUSION: WGS can be used as a reliable predicator of phenotypic resistance both for MRSA and VRE using readily available online tools.


Subject(s)
Computational Biology/methods , Drug Resistance, Bacterial , Methicillin-Resistant Staphylococcus aureus/drug effects , Vancomycin-Resistant Enterococci/drug effects , Whole Genome Sequencing/methods , Genes, Essential , Genome, Bacterial , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Phenotype , Point Mutation , Prospective Studies , Sensitivity and Specificity , Vancomycin-Resistant Enterococci/genetics , Web Browser
19.
Infect Control Hosp Epidemiol ; 40(3): 314-319, 2019 03.
Article in English | MEDLINE | ID: mdl-30773168

ABSTRACT

BACKGROUND: Identifying routes of transmission among hospitalized patients during a healthcare-associated outbreak can be tedious, particularly among patients with complex hospital stays and multiple exposures. Data mining of the electronic health record (EHR) has the potential to rapidly identify common exposures among patients suspected of being part of an outbreak. METHODS: We retrospectively analyzed 9 hospital outbreaks that occurred during 2011-2016 and that had previously been characterized both according to transmission route and by molecular characterization of the bacterial isolates. We determined (1) the ability of data mining of the EHR to identify the correct route of transmission, (2) how early the correct route was identified during the timeline of the outbreak, and (3) how many cases in the outbreaks could have been prevented had the system been running in real time. RESULTS: Correct routes were identified for all outbreaks at the second patient, except for one outbreak involving >1 transmission route that was detected at the eighth patient. Up to 40 or 34 infections (78% or 66% of possible preventable infections, respectively) could have been prevented if data mining had been implemented in real time, assuming the initiation of an effective intervention within 7 or 14 days of identification of the transmission route, respectively. CONCLUSIONS: Data mining of the EHR was accurate for identifying routes of transmission among patients who were part of the outbreak. Prospective validation of this approach using routine whole-genome sequencing and data mining of the EHR for both outbreak detection and route attribution is ongoing.


Subject(s)
Cross Infection/transmission , Data Mining/methods , Disease Outbreaks/prevention & control , Data Mining/statistics & numerical data , Electronic Health Records/statistics & numerical data , Female , Hospitals/statistics & numerical data , Humans , Male , Retrospective Studies
20.
J Biomed Inform ; 91: 103126, 2019 03.
Article in English | MEDLINE | ID: mdl-30771483

ABSTRACT

We present a statistical inference model for the detection and characterization of outbreaks of hospital associated infection. The approach combines patient exposures, determined from electronic medical records, and pathogen similarity, determined by whole-genome sequencing, to simultaneously identify probable outbreaks and their root-causes. We show how our model can be used to target isolates for whole-genome sequencing, improving outbreak detection and characterization even without comprehensive sequencing. Additionally, we demonstrate how to learn model parameters from reference data of known outbreaks. We demonstrate model performance using semi-synthetic experiments.


Subject(s)
Cross Infection/microbiology , Disease Outbreaks , Machine Learning , Medical Records , Humans , Models, Theoretical , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...